tm logo
PALSAR
Live/Registered
REGISTERED

on 14 Nov 2023

Last Applicant/ Owned by

1-3, Nihonbashi 2-chome, Chuo-ku

Tokyo

JP

.

Serial Number

88607972 filed on 06th Sep 2019

Registration Number

7215616 registered on 14th Nov 2023

in the Principal Register

Correspondent Address

Boris Umansky

Boris Umansky

224 S. Michigan Avenue, Suite 1600

Chicago, IL 60604

Filing Basis

1. intent to use

Disclaimer

NO DATA

PALSAR

Nucleic acid sequences as reagents for use in genetic research, other than for medical or veterinary purposes; nucleic acids for scientific purposes, chemical compositions and materials in the nature of chemicals for use in genotyping, all as chemicals for use in industry; reagents, enzymes, chemical compositions, chemical primers and chemical probes for use in the manufacture of pharmaceuticals; Read More

Classification Information


Class [001]
Chemical Products


Nucleic acid sequences as reagents for use in genetic research, other than for medical or veterinary purposes; nucleic acids for scientific purposes, chemical compositions and materials in the nature of chemicals for use in genotyping, all as chemicals for use in industry; reagents, enzymes, chemical compositions, chemical primers and chemical probes for use in the manufacture of pharmaceuticals; biochemical reagents commonly known as probes, for detecting and analyzing molecules in protein or nucleotide arrays; nucleic acid sequences known as probes for use in signal amplification for use in the manufacture of diagnostic reagents for scientific or medical research use; nucleic acid sequences known as probes for use in signal amplification techniques for use in the pharmaceutical industry; nucleic acid sequences known as probes for use in detecting nucleic acids for raw material in the manufacture of pharmaceuticals; nucleic acid sequences known as probes for use in detecting mRNA directly without synthesizing cDNA for use as a raw material in the manufacture of diagnostic reagents; nucleic acid sequences known as probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use as a raw material in the manufacture of diagnostic reagents for scientific or research use; nucleic acid sequences known as probes for use in forming self-assembly honeycomb structure for use as an ingredient in pharmaceuticals; nucleic acid sequences known as probes for use in quantifying intact drug and parent drug fragment for use as an ingredient in diagnostic reagents; nucleic acid sequences known as probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for an ingredient in diagnostic reagents for scientific or medical research; nucleic acid sequences known as probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; nucleic acid sequences known as probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for as diagnostic reagents for scientific or medical research use; nucleic acid sequences known as probes for use in quantifying using samples from blood, tissue and cell lysates for use in cell cultures other than for medical or veterinary use; nucleic acid sequences known as probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for diagnostic reagents and preparations, except for medical or veterinary use; nucleic acid sequences known as probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; nucleic acid sequences known as probes for use in self-assembly reactions for as reagents for use in industry utilizing technology of DNA self-assembly reactions; nucleic acid sequences known as probes to be used as signal amplifier for use in industry to detect nucleic acids; nucleic acid sequences known as probes for use in analyzing samples without using PCR for use in industry to detect mRNAs; biochemical reagents commonly known as probes for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; self-assembly formed by a short DNA probe pair for use in industry utilizing technology of DNA self-assembly reactions

Mark Details


Serial Number

No 88607972

Mark Type

No Service/Collective Mark

Attorney Docket Number

No 7T19719416

44D Filed

Yes

44D Current

No

44E filed

No

44E Current

Yes

66A Filed

No

66A Current

No

Current Basis

No

No Basis

No

Legal History


Show more

Status DateAction Taken
14th Nov 2023REGISTERED-PRINCIPAL REGISTER
14th Nov 2023NOTICE OF REGISTRATION CONFIRMATION EMAILED
12th Oct 20231(B) BASIS DELETED; PROCEED TO REGISTRATION
28th Aug 2023TEAS POST PUBLICATION AMENDMENT RECEIVED
28th Aug 2023NOTICE OF ALLOWANCE CANCELLED
28th Feb 2023NOA E-MAILED - SOU REQUIRED FROM APPLICANT
03rd Jan 2023PUBLISHED FOR OPPOSITION
03rd Jan 2023OFFICIAL GAZETTE PUBLICATION CONFIRMATION E-MAILED
14th Dec 2022NOTIFICATION OF NOTICE OF PUBLICATION E-MAILED
28th Nov 2022APPROVED FOR PUB - PRINCIPAL REGISTER